Глава 7 Thinking in Java 4th edition |
ПОВТОРНОЕ ИСПОЛЬЗОВАНИЕ КЛАССОВ
Возможность повторного использования кода принадлежит к числу важнейших преимуществ Java. Впрочем, по-настоящему масштабные изменения отнюдь не сводятся к обычному копированию и правке кода.ПОВТОРНОЕ ИСПОЛЬЗОВАНИЕ КЛАССОВ
Возможность повторного использования кода принадлежит к числу важнейших преимуществ Java. Впрочем, по-настоящему масштабные изменения отнюдь не сводятся к обычному копированию и правке кода.
Повторное использование на базе копирования кода характерно для процедурных языков, подобных C, но оно работало не очень хорошо. Решение этой проблемы в Java, как и многое другое, строится на концепции класса. Вместо того чтобы создавать новый класс «с чистого листа», вы берете за основу уже существующий класс, который кто-то уже создал и проверил на работоспособность.
Хитрость состоит в том, чтобы использовать классы без ущерба для существующего кода. В этой главе рассматриваются два пути реализации этой идеи. Первый довольно прямолинеен: объекты уже имеющихся классов просто создаются внутри вашего нового класса. Механизм построения нового класса из объектов существующих классов называется композицией (composition). Вы просто используете функциональность готового кода, а не его структуру.
Второй способ гораздо интереснее. Новый класс создается как специализация уже существующего класса. Взяв существующий класс за основу, вы добавляете к нему свой код без изменения существующего класса. Этот механизм называется наследованием (inheritance), и большую часть работы в нем совершает компилятор. Наследование является одним из «краеугольных камней» объектно-ориентированного программирования; некоторые из его дополнительных применений описаны в главе 8.
Синтаксис и поведение типов при использовании композиции и наследования нередко совпадают (что вполне логично, так как оба механизма предназначены для построения новых типов на базе уже существующих). В этой главе рассматриваются оба механизма повторного использования кода.
Синтаксис композиции
До этого момента мы уже довольно часто использовали композицию — ссылка на внедряемый объект просто включается в новый класс. Допустим, вам понадобился объект, содержащий несколько объектов String, пару полей примитивного типа и объект еще одного класса. Для не-примитивных объектов в новый класс включаются ссылки, а примитивы определяются сразу:
//: reusing/SprinklerSystem.java
// Композиция для повторного использования кода.
class WaterSource {
private String s;
WaterSource() {
System.out.println("WaterSource()");
s = "Constructed";
}
public String toString() { return s; }
}
public class SprinklerSystem {
private String valve1, valve2, valve3, valve4;
private WaterSource source = new WaterSource();
private int i;
private float f;
public String toString() {
return
"valve1 = " + valve1 + " " +
"valve2 = " + valve2 + " " +
"valve3 = " + valve3 + " " +
"valve4 = " + valve4 + "\n" +
"i = " + i + " " + "f = " + f + " " +
"source = " + source;
}
public static void main(String[] args) {
SprinklerSystem sprinklers = new SprinklerSystem();
System.out.println(sprinklers);
}
}
<spoiler text="Output:">
WaterSource()
valve1 = null valve2 = null valve3 = null valve4 = null
i = 0 f = 0.0 source = Constructed
</spoiler>
В обоих классах определяется особый метод toString(). Позже вы узнаете, что каждый не-примитивный объект имеет метод toString(), который вызывается в специальных случаях, когда компилятор располагает не объектом, а хочет получить его строковое представление в формате String. Поэтому в выражении из метода SрrinklerSystem.toString ():
"source = " + source;
компилятор видит, что к строке "source = " «прибавляется» объект класса WaterSource. Компилятор не может это сделать, поскольку к строке можно «добавить» только такую же строку, поэтому он преобразует объект source в String, вызывая метод toString(). После этого компилятор уже в состоянии соединить две строки и передать результат в метод System.out.println() (или статическим методам print() и printnb(), используемым в книге). Чтобы подобное поведение поддерживалось вашим классом, достаточно включить в него метод toString().
Примитивные типы, определенные в качестве полей класса, автоматически инициализируются нулевыми значениями, как упоминалось в главе 2. Однако ссылки на объекты заполняются значениями null, и при попытке вызова метода по такой ссылке произойдет исключение. К счастью, ссылку null можно вывести без выдачи исключения.
Компилятор не создает объекты для ссылок «по умолчанию», и это логично, потому что во многих случаях это привело бы к лишним затратам ресурсов. Если вам понадобится проинициализировать ссылку, сделайте это самостоятельно:
- в точке определения объекта. Это значит, что объект всегда будет инициализироваться перед вызовом конструктора;
- в конструкторе данного класса;
- непосредственно перед использованием объекта. Этот способ часто называют отложенной инициализацией. Он может сэкономить вам ресурсы в ситуациях, где создавать объект каждый раз необязательно и накладно;
- с использованием инициализации экземпляров.
В следующем примере продемонстрированы все четыре способа:
//: reusing/Bath.java
// Инициализация в конструкторе с композицией.
import static net.mindview.util.Print.*;
class Soap {
private String s;
Soap() {
print("Soap()");
s = "Constructed";
}
public String toString() { return s; }
}
public class Bath {
private String // Инициализация в точке определения :
s1 = "Happy",
s2 = "Happy",
s3, s4;
private Soap castille;
private int i;
private float toy;
public Bath() {
print("Inside Bath()");
s3 = "Joy";
toy = 3.14f;
castille = new Soap();
}
// Инициализация экземпляра:
{ i = 47; }
public String toString() {
if(s4 == null) // Отложенная инициализация:
s4 = "Joy";
return
"s1 = " + s1 + "\n" +
"s2 = " + s2 + "\n" +
"s3 = " + s3 + "\n" +
"s4 = " + s4 + "\n" +
"i = " + i + "\n" +
"toy = " + toy + "\n" +
"castille = " + castille;
}
public static void main(String[] args) {
Bath b = new Bath();
print(b);
}
}
<spoiler text="Output:">
Inside Bath()
Soap()
s1 = Happy
s2 = Happy
s3 = Joy
s4 = Joy
i = 47
toy = 3.14
castille = Constructed
</spoiler>
Заметьте, что в конструкторе класса Bath команда выполняется до проведения какой-либо инициализации. Если инициализация в точке определения не выполняется, нет никаких гарантий того, что она будет выполнена перед отправкой сообщения по ссылке объекта — кроме неизбежных исключений времени выполнения.
При вызове метода toString() в нем присваивается значение ссылке s4, чтобы все поля были должным образом инициализированы к моменту их использования.
Синтаксис наследования
Наследование является неотъемлемой частью Java (и любого другого языка ООП). Фактически оно всегда используется при создании класса, потому что, даже если класс не объявляется производным от другого класса, он автоматически становится производным от корневого класса Java Object.
Синтаксис композиции очевиден, но для наследования существует совершенно другая форма записи. При использовании наследования вы фактически говорите: «Этот новый класс похож на тот старый класс». В программе этот факт выражается перед фигурной скобкой, открывающей тело класса: сначала записывается ключевое слово extends, а затем имя базового (base) класса. Тем самым вы автоматически получаете доступ ко всем полям и методам базового класса. Пример:
//: reusing/Detergent.java
// Синтаксис наследования и его свойства.
import static net.mindview.util.Print.*;
class Cleanser {
private String s = "Cleanser";
public void append(String a) { s += a; }
public void dilute() { append(" dilute()"); }
public void apply() { append(" apply()"); }
public void scrub() { append(" scrub()"); }
public String toString() { return s; }
public static void main(String[] args) {
Cleanser x = new Cleanser();
x.dilute(); x.apply(); x.scrub();
print(x);
}
}
public class Detergent extends Cleanser {
// Изменяем метод:
public void scrub() {
append(" Detergent.scrub()");
super.scrub(); // Вызываем метод базового класса
}
// Добавляем новые методы к интерфейсу :
public void foam() { append(" foam()"); }
// Проверяем новый класс:
public static void main(String[] args) {
Detergent x = new Detergent();
x.dilute();
x.apply();
x.scrub();
x.foam();
print(x);
print("Testing base class:");
Cleanser.main(args);
}
}
<spoiler text="Output:">
Cleanser dilute() apply() Detergent.scrub() scrub() foam()
Testing base class:
Cleanser dilute() apply() scrub()
</spoiler>
Пример демонстрирует сразу несколько особенностей наследования. Во-первых, в методе класса Cleanser.append() новые строки присоединяются к строке s оператором +=, одним из операторов, специально «перегруженных» создателями Java для строк (String).
Во-вторых, как Cleanser, так и Detergent содержат метод main(). Вы можете определить метод main() в каждом из своих классов; это позволяет встраивать тестовый код прямо в класс. Метод main() даже не обязательно удалять после завершения тестирования, его вполне можно оставить на будущее.
Даже если у вас в программе имеется множество классов, из командной строки исполняется только один (так как метод main() всегда объявляется как public, то неважно, объявлен ли класс, в котором он описан, как public). В нашем примере команда java Detergent вызывает метод Detergent.main(). Однако вы также можете использовать команду java Cleanser для вызова метода Cleanser.main(), хотя класс Cleanser не объявлен открытым. Даже если класс обладает доступом в пределах класса, открытый метод main() остается доступным.
Здесь метод Detergent.main() вызывает Cleanser.main() явно, передавая ему собственный массив аргументов командной строки (впрочем, для этого годится любой массив строк).
Важно, что все методы класса Cleanser объявлены открытыми. Помните, что при отсутствии спецификатора доступа, член класса автоматически получает доступ «в пределах пакета», что позволяет обращаться к нему только из текущего пакета. Таким образом, в пределах данного пакета при отсутствии спецификатора доступа вызов этих методов разрешен кому угодно — например, это легко может сделать класс Detergent.
Но если бы какой-то класс из другого пакета был объявлен производным от класса Cleanser, то он получил бы доступ только к его public-членам. С учетом возможности наследования все поля обычно помечаются как private, а все методы — как public. (Производный класс также получает доступ к защищенным (protected) членам базового класса, но об этом позже.) Конечно, иногда вы будете отступать от этих правил, но в любом случае полезно их запомнить.
Класс Cleanser содержит ряд методов: append(), dilute(), apply(), scrub() и toString(). Так как класс Detergent произведен от класса Cleanser (с помощью ключевого слова extends), он автоматически получает все эти методы в своем интерфейсе, хотя они и не определяются явно в классе Detergent. Таким образом, наследование обеспечивает повторное использование класса.
Как показано на примере метода scrub(), разработчик может взять уже существующий метод базового класса и изменить его. Возможно, в этом случае потребуется вызвать метод базового класса из новой версии этого метода. Однако в методе scrub() вы не можете просто вызвать scrub() — это приведет к рекурсии, а нам нужно не это. Для решения проблемы в Java существует ключевое слово super, которое обозначает «суперкласс», то есть класс, производным от которого является текущий класс. Таким образом, выражение super.scrub() обращается к методу scrub() из базового класса.
При наследовании вы не ограничены использованием методов базового класса. В производный класс можно добавлять новые методы тем же способом, что и раньше, то есть просто определяя их. Метод foam() — наглядный пример такого подхода.
В методе Detergent.main() для объекта класса Detergent вызываются все методы, доступные как из класса Cleanser, так и из класса Detergent (имеется в виду метод foam()).
Инициализация базового класса
Так как в наследовании участвуют два класса, базовый и производный, не сразу понятно, какой же объект получится в результате. Внешне все выглядит так, словно новый класс имеет тот же интерфейс, что и базовый класс, плюс еще несколько дополнительных методов и полей. Однако наследование не просто копирует интерфейс базового класса. Когда вы создаете объект производного класса, внутри него содержится подобъект базового класса. Этот подобъект выглядит точно так же, как выглядел бы созданный обычным порядком объект базового класса. Поэтому извне представляется, будто бы в объекте производного класса «упакован» объект базового класса.
Конечно, очень важно, чтобы подобъект базового класса был правильно инициализирован, и гарантировать это можно только одним способом: выполнить инициализацию в конструкторе, вызывая при этом конструктор базового класса, у которого есть необходимые знания и привилегии для проведения инициализации базового класса. Java автоматически вставляет вызовы конструктора базового класса в конструктор производного класса. В следующем примере задействовано три уровня наследования:
//: reusing/Cartoon.java
// Вызовы конструкторов при проведении наследования
import static net.mindview.util.Print.*;
class Art {
Art() { print("Art constructor"); }
}
class Drawing extends Art {
Drawing() { print("Drawing constructor"); }
}
public class Cartoon extends Drawing {
public Cartoon() { print("Cartoon constructor"); }
public static void main(String[] args) {
Cartoon x = new Cartoon();
}
}
<spoiler text="Output:">
Art constructor
Drawing constructor
Cartoon constructor
</spoiler>
Как видите, конструирование начинается с «самого внутреннего» базового класса, поэтому базовый класс инициализируется еще до того, как он станет доступным для конструктора производного класса. Даже если конструктор класса Cartoon не определен, компилятор сгенерирует конструктор по умолчанию, в котором также вызывается конструктор базового класса.
Конструкторы с аргументами
В предыдущем примере использовались конструкторы по умолчанию, то есть конструкторы без аргументов. У компилятора не возникает проблем с вызовом таких конструкторов, так как вопросов о передаче аргументов не возникает. Если класс не имеет конструктора по умолчанию или вам понадобится вызвать конструктор базового класса с аргументами, этот вызов придется оформить явно, с указанием ключевого слова super и передачей аргументов:
//: reusing/Chess.java
// Наследование, конструкторы и аргументы.
import static net.mindview.util.Print.*;
class Game {
Game(int i) {
print("Game constructor");
}
}
class BoardGame extends Game {
BoardGame(int i) {
super(i);
print("BoardGame constructor");
}
}
public class Chess extends BoardGame {
Chess() {
super(11);
print("Chess constructor");
}
public static void main(String[] args) {
Chess x = new Chess();
}
}
<spoiler text="Output:">
Game constructor
BoardGame constructor
Chess constructor
</spoiler>
Если не вызвать конструктор базового класса в BoardGame(), то компилятор «пожалуется» на то, что не может обнаружить конструктор в форме Game(). Вдобавок вызов конструктора базового класса должен быть первой командой в конструкторе производного класса. (Если вы вдруг забудете об этом, компилятор вам тут же напомнит.)
Делегирование
Третий вид отношений, не поддерживаемый в Java напрямую, называется делегированием. Он занимает промежуточное положение между наследованием и композицией: экземпляр существующего класса включается в создаваемый класс (как при композиции), но в то же время все методы встроенного объекта становятся доступными в новом классе (как при наследовании). Например, класс SpaceShipControls имитирует модуль управления космическим кораблем:
//: reusing/SpaceShipControls.java
public class SpaceShipControls {
void up(int velocity#41; {}
void down(int velocity) {}
void left(int velocity) {}
void right(int velocity) {}
void forward(int velocity) {}
void back(int velocity) {}
void turboBoost() {}
}
Для построения космического корабля можно воспользоваться наследованием:
//: reusing/SpaceShip.java
public class SpaceShip extends SpaceShipControls {
private String name;
public SpaceShip(String name) { this.name = name; }
public String toString() { return name; }
public static void main(String[] args) {
SpaceShip protector = new SpaceShip("NSEA Protector");
protector.forward(100);
}
}
Однако космический корабль не может рассматриваться как частный случай своего управляющего модуля — несмотря на то, что ему, к примеру, можно приказать двигаться вперед (forward()). Точнее сказать, что SpaceShip содержит SpaceShipControls, и в то же время все методы последнего предоставляются классом SpaceShip. Проблема решается при помощи делегирования:
//: reusing/SpaceShipDelegation.java
public class SpaceShipDelegation {
private String name;
private SpaceShipControls controls =
new SpaceShipControls();
public SpaceShipDelegation(String name) {
this.name = name;
}
// Делегированные методы:
public void back(int velocity) {
controls.back(velocity);
}
public void down(int velocity) {
controls.down(velocity);
}
public void forward(int velocity) {
controls.forward(velocity);
}
public void left(int velocity) {
controls.left(velocity);
}
public void right(int velocity) {
controls.right(velocity);
}
public void turboBoost() {
controls.turboBoost();
}
public void up(int velocity) {
controls.up(velocity);
}
public static void main(String[] args) {
SpaceShipDelegation protector =
new SpaceShipDelegation("NSEA Protector");
protector.forward(100);
}
}
Как видите, вызовы методов переадресуются встроенному объекту controls, а интерфейс остается таким же, как и при наследовании. С другой стороны, делегирование позволяет лучше управлять происходящим, потому что вы можете ограничиться небольшим подмножеством методов встроенного объекта.
Хотя делегирование не поддерживается языком Java, его поддержка присутствует во многих средах разработки. Например, приведенный пример был автоматически сгенерирован в JetBrains Idea IDE.
Сочетание композиции и наследования
Композиция очень часто используется вместе с наследованием. Следующий пример демонстрирует процесс создания более сложного класса с объединением композиции и наследования, с выполнением необходимой инициализации в конструкторе:
//: reusing/PlaceSetting.java
// Совмещение композиции и наследования.
import static net.mindview.util.Print.*;
class Plate {
Plate(int i) {
print("Plate constructor");
}
}
class DinnerPlate extends Plate {
DinnerPlate(int i) {
super(i);
print("DinnerPlate constructor");
}
}
class Utensil {
Utensil(int i) {
print("Utensil constructor");
}
}
class Spoon extends Utensil {
Spoon(int i) {
super(i);
print("Spoon constructor");
}
}
class Fork extends Utensil {
Fork(int i) {
super(i);
print("Fork constructor");
}
}
class Knife extends Utensil {
Knife(int i) {
super(i);
print("Knife constructor");
}
}
// A cultural way of doing something:
class Custom {
Custom(int i) {
print("Custom constructor");
}
}
public class PlaceSetting extends Custom {
private Spoon sp;
private Fork frk;
private Knife kn;
private DinnerPlate pl;
public PlaceSetting(int i) {
super(i + 1);
sp = new Spoon(i + 2);
frk = new Fork(i + 3);
kn = new Knife(i + 4);
pl = new DinnerPlate(i + 5);
print("PlaceSetting constructor");
}
public static void main(String[] args) {
PlaceSetting x = new PlaceSetting(9);
}
}
<spoiler text="Output:">
Custom constructor
Utensil constructor
Spoon constructor
Utensil constructor
Fork constructor
Utensil constructor
Knife constructor
Plate constructor
DinnerPlate constructor
PlaceSetting constructor
</spoiler>
Несмотря на то, что компилятор заставляет вас инициализировать базовые классы и требует, чтобы вы делали это прямо в начале конструктора, он не следит за инициализацией встроенный объектов, поэтому вы должны сами помнить об этом.
Обеспечение правильного завершения
В Java отсутствует понятие деструктора из C++ — метода, автоматически вызываемого при уничтожении объекта. В Java программисты просто «забывают» об объектах, не уничтожая их самостоятельно, так как функции очистки памяти возложены на сборщика мусора.
Во многих случаях эта модель работает, но иногда класс выполняет некоторые операции, требующие завершающих действий. Как упоминалось в главе 5, вы не знаете, когда будет вызван сборщик мусора и произойдет ли это вообще. Поэтому, если в классе должны выполняться действия по очистке, вам придется написать для этого особый метод и сделать так, чтобы программисты-клиенты знали о необходимости вызова этого метода. Более того, как описано в главе 10, вам придется предусмотреть возможные исключения и выполнить завершающие действия в секции finally.
Представим пример системы автоматизированного проектирования, которая рисует на экране изображения:
//: reusing/CADSystem.java
// Обеспечение необходимого завершения.
package reusing;
import static net.mindview.util.Print.*;
class Shape {
Shape(int i) { print("Shape constructor"); }
void dispose() { print("Shape dispose"); }
}
class Circle extends Shape {
Circle(int i) {
super(i);
print("Drawing Circle");
}
void dispose() {
print("Erasing Circle");
super.dispose();
}
}
class Triangle extends Shape {
Triangle(int i) {
super(i);
print("Drawing Triangle");
}
void dispose() {
print("Erasing Triangle");
super.dispose();
}
}
class Line extends Shape {
private int start, end;
Line(int start, int end) {
super(start);
this.start = start;
this.end = end;
print("Drawing Line: " + start + ", " + end);
}
void dispose() {
print("Erasing Line: " + start + ", " + end);
super.dispose();
}
}
public class CADSystem extends Shape {
private Circle c;
private Triangle t;
private Line[] lines = new Line[3];
public CADSystem(int i) {
super(i + 1);
for(int j = 0; j < lines.length; j++)
lines[j] = new Line(j, j*j);
c = new Circle(1);
t = new Triangle(1);
print("Combined constructor");
}
public void dispose() {
print("CADSystem.dispose()");
// Завершение осуществляется в порядке,
// обратном порядку инициализации
t.dispose();
c.dispose();
for(int i = lines.length - 1; i >= 0; i--)
lines[i].dispose();
super.dispose();
}
public static void main(String[] args) {
CADSystem x = new CADSystem(47);
try {
// Код и обработка исключений...
} finally {
x.dispose();
}
}
}
<spoiler text="Output:">
Shape constructor
Shape constructor
Drawing Line: 0, 0
Shape constructor
Drawing Line: 1, 1
Shape constructor
Drawing Line: 2, 4
Shape constructor
Drawing Circle
Shape constructor
Drawing Triangle
Combined constructor
CADSystem.dispose()
Erasing Triangle
Shape dispose
Erasing Circle
Shape dispose
Erasing Line: 2, 4
Shape dispose
Erasing Line: 1, 1
Shape dispose
Erasing Line: 0, 0
Shape dispose
Shape dispose
</spoiler>
Все в этой системе является некоторой разновидностью класса Shape (который, в свою очередь, неявно наследует от корневого класса Object). Каждый класс переопределяет метод dispose() класса Shape, вызывая при этом версию метода из базового класса с помощью ключевого слова super.
Все конкретные классы, унаследованные от Shape — Circle, Triangle и Line, имеют конструкторы, которые просто выводят сообщение, хотя во время жизни объекта любой метод может сделать что-то, требующее очистки. В каждом классе есть свой собственный метод dispose(), который восстанавливает ресурсы, не связанные с памятью, к исходному состоянию до создания объекта.
В методе main() вы можете заметить два новых ключевых слова, которые будут подробно рассмотрены в главе 10: try и finally. Ключевое слово try показывает, что следующий за ним блок (ограниченный фигурными скобками) является защищенной секцией. Код в секции finally выполняется всегда, независимо от того, как прошло выполнение блока try. (При обработке исключений можно выйти из блока try некоторыми необычными способами.) В данном примере секция finally означает: «Что бы ни произошло, в конце всегда вызывать метод x.dispose()».
Также обратите особое внимание на порядок вызова завершающих методов для базового класса и объектов-членов в том случае, если они зависят друг от друга. В основном нужно следовать тому же принципу, что использует компилятор C++ при вызове деструкторов: сначала провести завершающие действия для вашего класса в последовательности, обратной порядку их создания. (Обычно для этого требуется, чтобы элементы базовых классов продолжали существовать.) Затем вызываются завершающие методы из базовых классов, как и показано в программе.
Во многих случаях завершающие действия не являются проблемой; достаточно дать сборщику мусора выполнить свою работу. Но уж если понадобилось провести их явно, сделайте это со всей возможной тщательностью и вниманием, так как в процессе сборки мусора трудно в чем-либо быть уверенным. Сборщик мусора вообще может не вызываться, а если он начнет работать, то объекты будут уничтожаться в произвольном порядке. Лучше не полагаться на сборщик мусора в ситуациях, где дело не касается освобождения памяти. Если вы хотите провести завершающие действия, создайте для этой цели свой собственный метод и не полагайтесь на метод finalize().
Сокрытие имен
Если какой-либо из методов базового класса Java был перегружен несколько раз, переопределение имени этого метода в производном классе не скроет ни одну из базовых версий (в отличие от C++). Поэтому перегрузка работает вне зависимости от того, где был определен метод — на текущем уровне или в базовом классе:
//: reusing/Hide.java
// Перегрузка имени метода из базового класса
// в производном классе не скроет базовую версию метода.
import static net.mindview.util.Print.*;
class Homer {
char doh(char c) {
print("doh(char)");
return 'd';
}
float doh(float f) {
print("doh(float)");
return 1.0f;
}
}
class Milhouse {}
class Bart extends Homer {
void doh(Milhouse m) {
print("doh(Milhouse)");
}
}
public class Hide {
public static void main(String[] args) {
Bart b = new Bart();
b.doh(1);
b.doh('x');
b.doh(1.0f);
b.doh(new Milhouse());
}
}
<spoiler text="Output:">
doh(float)
doh(char)
doh(float)
doh(Milhouse)
</spoiler>
Мы видим, что все перегруженные методы класса Homer доступны классу Bart, хотя класс Bart и добавляет новый перегруженный метод (в C++ такое действие спрятало бы все методы базового класса). Как вы увидите в следующей главе, на практике при переопределении методов гораздо чаще используется точно такое же описание и список аргументов, как и в базовом классе. Иначе легко можно запутаться (и поэтому C++ запрещает это, чтобы предотвратить совершение возможной ошибки).
В Java SE5 появилась запись @Override; она не является ключевым словом, но может использоваться так, как если бы была им. Если вы собираетесь переопределить метод, используйте @Override, и компилятор выдаст сообщение об ошибке, если вместо переопределения будет случайно выполнена перегрузка:
//: reusing/Lisa.java
// {CompileTimeError} (Won't compile)
class Lisa extends Homer {
@Override
void doh(Milhouse m) {
System.out.println("doh(Milhouse)");
}
}
Композиция в сравнении с наследованием
И композиция, и наследование позволяют вам помещать подобъекты внутрь вашего нового класса (при композиции это происходит явно, а в наследовании — опосредованно). Вы можете поинтересоваться, в чем между ними разница и когда следует выбирать одно, а когда — другое.
Композиция в основном применяется, когда в новом классе необходимо использовать функциональность уже существующего класса, но не его интерфейс. То есть вы встраиваете объект, чтобы использовать его возможности в новом классе, а пользователь класса видит определенный вами интерфейс, но не замечает встроенных объектов. Для этого внедряемые объекты объявляются со спецификатором private.
Иногда требуется предоставить пользователю прямой доступ к композиции вашего класса, то есть сделать встроенный объект открытым (public). Встроенные объекты и сами используют сокрытие реализации, поэтому открытый доступ безопасен. Когда пользователь знает, что класс собирается из составных частей, ему значительно легче понять его интерфейс. Хорошим примером служит объект Саr (машина):
//: reusing/Car.java
// Композиция с использованием открытых объектов
class Engine {
public void start() {}
public void rev() {}
public void stop() {}
}
class Wheel {
public void inflate(int psi) {}
}
class Window {
public void rollup() {}
public void rolldown() {}
}
class Door {
public Window window = new Window();
public void open() {}
public void close() {}
}
public class Car {
public Engine engine = new Engine();
public Wheel[] wheel = new Wheel[4];
public Door
left = new Door(),
right = new Door(); // 2-door
public Car() {
for(int i = 0; i < 4; i++)
wheel[i] = new Wheel();
}
public static void main(String[] args) {
Car car = new Car();
car.left.window.rollup();
car.wheel[0].inflate(72);
}
}
Так как композиция объекта является частью проведенного анализа задачи (а не просто частью реализации класса), объявление членов класса открытыми (public) помогает программисту-клиенту понять, как использовать класс, и облегчает создателю класса написание кода. Однако нужно все-таки помнить, что описанный случай является специфическим и в основном поля класса следует объявлять как private.
При использовании наследования вы берете уже существующий класс и создаете его специализированную версию. В основном это значит, что класс общего назначения адаптируется для конкретной задачи. Если чуть-чуть подумать, то вы поймете, что не имело бы смысла использовать композицию машины и средства передвижения — машина не содержит средства передвижения, она сама есть это средство. Взаимосвязь «является» выражается наследованием, а взаимосвязь «имеет» описывается композицией.
protected
После знакомства с наследованием ключевое слово protected наконец-то обрело смысл. В идеале закрытых членов private должно было быть достаточно. В реальности существуют ситуации, когда вам необходимо спрятать что-либо от окружающего мира, тем не менее оставив доступ для производных классов.
Ключевое слово protected — дань прагматизму. Оно означает: «Член класса является закрытым (private) для пользователя класса, но для всех, кто наследует от класса, и для соседей по пакету он доступен». (В Java protected автоматически предоставляет доступ в пределах пакета.)
Лучше всего, конечно, объявлять поля класса как private — всегда стоит оставить за собою право изменять лежащую в основе реализацию. Управляемый доступ наследникам класса предоставляется через методы protected:
//: reusing/Orc.java
// Ключевое слово protected
import static net.mindview.util.Print.*;
class Villain {
private String name;
protected void set(String nm) { name = nm; }
public Villain(String name) { this.name = name; }
public String toString() {
return "I'm a Villain and my name is " + name;
}
}
public class Orc extends Villain {
private int orcNumber;
public Orc(String name, int orcNumber) {
super(name);
this.orcNumber = orcNumber;
}
public void change(String name, int orcNumber) {
set(name); // Доступно, так как объявлено protected
this.orcNumber = orcNumber;
}
public String toString() {
return "Orc " + orcNumber + ": " + super.toString();
}
public static void main(String[] args) {
Orc orc = new Orc("Limburger", 12);
print(orc);
orc.change("Bob", 19);
print(orc);
}
}
<spoiler text="Output:">
Orc 12: I'm a Villain and my name is Limburger
Orc 19: I'm a Villain and my name is Bob
</spoiler>
Как видите, метод change() имеет доступ к методу set(), поскольку тот объявлен как protected. Также обратите внимание, что метод toString() класса Orс определяется с использованием версии этого метода из базового класса.
Восходящее преобразование типов
Самая важная особенность наследования заключается вовсе не в том, что оно предоставляет методы для нового класса, — наследование выражает отношения между новым и базовым классом. Ее можно выразить .следующим образом: «Новый класс имеет тип существующего класса».
Данная формулировка — не просто причудливый способ описания наследования, она напрямую поддерживается языком. В качестве примера рассмотрим базовый класс с именем Instrument для представления музыкальных инструментов и его производный класс Wind. Так как наследование означает, что все методы базового класса также доступны в производном классе, любое сообщение, которое вы в состоянии отправить базовому классу, можно отправить и производному классу.
Если в классе Instrument имеется метод play(), то он будет присутствовать и в классе Wind. Таким образом, мы можем со всей определенностью утверждать, что объекты Wind также имеют тип Instrument. Следующий пример показывает, как компилятор поддерживает такое понятие:
//: reusing/Wind.java
// Наследование и восходящее преобразование.
class Instrument {
public void play() {}
static void tune(Instrument i) {
// ...
i.play();
}
}
// Объекты Wind также являются объектами Instrument,
// поскольку они имеют тот же интерфейс:
public class Wind extends Instrument {
public static void main(String[] args) {
Wind flute = new Wind();
Instrument.tune(flute); // Восходящее преобразование
}
}
Наибольший интерес в этом примере представляет метод tune(), получающий ссылку на объект Instrument. Однако в методе Wind.main() методу tune() передается ссылка на объект Wind. С учетом всего, что говорилось о строгой проверке типов в Java, кажется странным, что метод с готовностью берет один тип вместо другого. Но стоит вспомнить, что объект Wind также является объектом Instrument, и не существует метода, который можно вызвать в методе tune() для объектов Instrument, но нельзя для объектов Wind. В методе tune() код работает для Instrument и любых объектов, производных от Instrument, а преобразование ссылки на объект Wind в ссылку на объект Instrument называется восходящим преобразованием типов (upcasting).
Почему «восходящее преобразование»?
Термин возник по историческим причинам: традиционно на диаграммах наследования корень иерархии изображался у верхнего края страницы, а диаграмма разрасталась к нижнему краю страницы. (Конечно, вы можете рисовать свои диаграммы так, как сочтете нужным.) Для файла Wind.java диаграмма наследования выглядит так:
Преобразование от производного типа к базовому требует движения вверх по диаграмме, поэтому часто называется восходящим преобразованием. Восходящее преобразование всегда безопасно, так как это переход от конкретного типа к более общему типу. Иначе говоря, производный класс является надстройкой базового класса. Он может содержать больше методов, чем базовый класс, но обязан включать в себя все методы базового класса.
Единственное, что может произойти с интерфейсом класса при восходящем преобразовании, — потеря методов, но никак не их приобретение. Именно поэтому компилятор всегда разрешает выполнять восходящее преобразование, не требуя явных преобразований или других специальных обозначений.
Преобразование также может выполняться и в обратном направлении — так называемое нисходящее преобразование (downcasting). Но при этом возникает проблема, которая рассматривается в главе 1.1.
Снова о композиции с наследованием
В объектно-ориентированном программировании разработчик обычно упаковывает данные вместе с методами в классе, а затем работает с объектами этого класса. Существующие классы также используются для создания новых классов посредством композиции. Наследование на практике применяется реже. Поэтому, хотя во время изучения ООП наследованию уделяется очень много внимания, это не значит, что его следует без разбора применять всюду, где это возможно. Наоборот, пользоваться им следует осмотрительно — только там, где полезность наследования не вызывает сомнений. Один из хороших критериев выбора между композицией и наследованием — спросить себя, собираеесь ли вы впоследствии проводить восходящее преобразование от производного класса к базовому классу. Если восходящее преобразование актуально, выбирайте наследование, а если нет — подумайте, нельзя ли поступить иначе.
Ключевое слово final
В Java смысл ключевого слова final зависит от контекста, но в основном оно означает: «Это нельзя изменить». Запрет на изменения может объясняться двумя причинами: архитектурой программы или эффективностью. Эти две причины основательно различаются, поэтому в программе возможно неверное употребление ключевого слова final.
В следующих разделах обсуждаются три возможных применения final: для данных, методов и классов.
Неизменные данные
Во многих языках программирования существует тот или иной способ сказать компилятору, что частица данных является «константой». Константы полезны в двух ситуациях:
- константа времени компиляции, которая никогда не меняется;
- значение, инициализируемое во время работы программы, которое нельзя изменять.
Компилятор подставляет значение константы времени компиляции во все выражения, где оно используется; таким образом предотвращаются некоторые издержки выполнения. В Java подобные константы должны относиться к примитивным типам, а для их определения используется ключевое слово final. Значение такой константы присваивается во время определения.
Поле, одновременно объявленное с ключевыми словами static и final, существует в памяти в единственном экземпляре и не может быть изменено.
При использовании слова final со ссылками на объекты его смысл не столь очевиден. Для примитивов final делает постоянным значение, но для ссылки на объект постоянной становится ссылка. После того как такая ссылка будет связана с объектом, она уже не сможет указывать на другой объект. Впрочем, сам объект при этом может изменяться; в Java нет механизмов, позволяющих сделать произвольный объект неизменным. (Впрочем, вы сами можете написать ваш класс так, чтобы его объекты фактически были константными.) Данное ограничение относится и к массивам, которые тоже являются объектами.
Следующий пример демонстрирует использование final для полей классов:
//: reusing/FinalData.java
// Действие ключевого слова final для полей.
import java.util.*;
import static net.mindview.util.Print.*;
class Value {
int i; // доступ в пределах пакета
public Value(int i) { this.i = i; }
}
public class FinalData {
private static Random rand = new Random(47);
private String id;
public FinalData(String id) { this.id = id; }
// Могут быть константами времени компиляции:
private final int valueOne = 9;
private static final int VALUE_TWO = 99;
// Типичная открытая константа:
public static final int VALUE_THREE = 39;
// He может быть константой времени компиляции:
private final int i4 = rand.nextInt(20);
static final int INT_5 = rand.nextInt(20);
private Value v1 = new Value(11);
private final Value v2 = new Value(22);
private static final Value VAL_3 = new Value(33);
// Массивы:
private final int[] a = { 1, 2, 3, 4, 5, 6 };
public String toString() {
return id + ": " + "i4 = " + i4 + ", INT_5 = " + INT_5;
}
public static void main(String[] args) {
FinalData fd1 = new FinalData("fd1");
//! fd1.valueOne++; // Ошибка значение нельзя изменить
fd1.v2.i++; // Объект не является неизменным!
fd1.v1 = new Value(9); // OK - не является неизменным
for(int i = 0; i < fd1.a.length; i++)
fd1.a[i]++; // Объект не является неизменным!
//! fd1.v2 = new Value(0); // Ошибка: ссылку
//! fd1.VAL_3 = new Value(1); // нельзя изменить
//! fd1.a = new int[3];
print(fd1);
print("Creating new FinalData");
FinalData fd2 = new FinalData("fd2");
print(fd1);
print(fd2);
}
}
<spoiler text="Output:">
fd1: i4 = 15, INT_5 = 18
Creating new FinalData
fd1: i4 = 15, INT_5 = 18
fd2: i4 = 13, INT_5 = 18
</spoiler>
Так как valueOne и VALUE_TWO являются примитивными типами со значениями, заданными на стадии компиляции, они оба могут использоваться в качестве констант времени компиляции, и принципиальных различий между ними нет. Константа VALUE_THREE демонстрирует общепринятый способ определения подобных полей: спецификатор public открывает к ней доступ за пределами пакета; ключевое слово static указывает, что она существует в единственном числе, а ключевое слово final указывает, что ее значение остается неизменным. Заметьте, что примитивы final static с неизменными начальными значениями (то есть константы времени компиляции) записываются целиком заглавными буквами, а слова разделяются подчеркиванием (эта схема записи констант позаимствована из языка C).
Само по себе присутствие final еще не означает, что значение переменной известно уже на стадии компиляции. Данный факт продемонстрирован на примере инициализации І4 и INT_5 с использованием случайных чисел. Эта часть программы также показывает разницу между статическими и нестатическими константами. Она проявляется только при инициализации во время исполнения, так как все величины времени компиляции обрабатываются компилятором одинаково (и обычно просто устраняются с целью оптимизации). Различие проявляется в результатах запуска программы. Заметьте, что значения поля І4 для объектов fdl и fd2 уникальны, но значение поля INT_5 не изменяется при создании второго объекта FinalData. Дело в том, что поле INT_5 объявлено как static, поэтому оно инициализируется только один раз во время загрузки класса.
Переменные от v1 до VAL_3 поясняют смысл объявления ссылок с ключевым словом final. Как видно из метода main(), объявление ссылки v2 как final еще не означает, что ее объект неизменен. Однако присоединить ссылку v2 к новому объекту не получится, как раз из-за того, что она была объявлена как final. Именно такой смысл имеет ключевое слово final по отношению к ссылкам. Вы также можете убедиться, что это верно и для массивов, которые являются просто другой разновидностью ссылки. Пожалуй, для ссылок ключевое слово final обладает меньшей практической ценностью, чем для примитивов.
Пустые константы
В Java разрешается создавать пустые константы — поля, объявленные как final, которым, однако, не было присвоено начальное значение. Во всех случаях пустую константу обязательно нужно инициализировать перед использованием, и компилятор следит за этим. Впрочем, пустые константы расширяют свободу действий при использовании ключевого слова final, так как, например, поле final в классе может быть разным для каждого объекта, и при этом оно сохраняет свою неизменность. Пример:
//: reusing/BlankFinal.java
// "Пустые" неизменные поля.
class Poppet {
private int i;
Poppet(int ii) { i = ii; }
}
public class BlankFinal {
private final int i = 0; // Инициализированная константа
private final int j; // Пустая константа
private final Poppet p; // Пустая константа-ссылка
// Пустые константы НЕОБХОДИМО инициализировать в конструкторе:
public BlankFinal() {
j = 1; // Инициализация пустой константы
p = new Poppet(1); // Инициализация пустой неизменной ссылки
}
public BlankFinal(int x) {
j = x; // Инициализация пустой константы
p = new Poppet(x); // Инициализация пустой неизменной ссылки
}
public static void main(String[] args) {
new BlankFinal();
new BlankFinal(47);
}
}
Значения неизменных (final) переменных обязательно должны присваиваться или в выражении, записываемом в точке определения переменной, или в каждом из конструкторов класса. Тем самым гарантируется инициализация полей, объявленных как final, перед их использованием.
Неизменные аргументы
Java позволяет вам объявлять неизменными аргументы метода, объявляя их с ключевым словом final в списке аргументов. Это значит, что метод не может изменить значение, на которое указывает передаваемая ссылка:
//: reusing/FinalArguments.java
// Использование final с аргументами метода
class Gizmo {
public void spin() {}
}
public class FinalArguments {
void with(final Gizmo g) {
//! g = new Gizmo(); // запрещено -- g объявлено final
}
void without(Gizmo g) {
g = new Gizmo(); // Разрешено -- g не является final
g.spin();
}
// void f(final int i) { i++; } // Нельзя изменять
// неизменные примитивы доступны только для чтения:
int g(final int i) { return i + 1; }
public static void main(String[] args) {
FinalArguments bf = new FinalArguments();
bf.without(null);
bf.with(null);
}
}
Методы f() и g() показывают, что происходит при передаче методу примитивов с пометкой final: их значение можно прочитать, но изменить его не удастся.
Неизменные методы
Неизменные методы используются по двум причинам. Первая причина — «блокировка» метода, чтобы производные классы не могли изменить его содержание. Это делается по соображениям проектирования, когда вам точно надо знать, что поведение метода не изменится при наследовании.
Второй причиной в прошлом считалась эффективность. В более ранних реализациях Java объявление метода с ключевым словом final позволяло компилятору превращать все вызовы такого метода во встроенные (inline). Когда компилятор видит метод, объявленный как final, он может (на свое усмотрение) пропустить стандартный механизм вставки кода для проведения вызова метода (занести аргументы в стек, перейти к телу метода, исполнить находящийся там код, вернуть управление, удалить аргументы из стека и распорядиться возвращенным значением) и вместо этого подставить на место вызова копию реального кода, находящегося в теле метода. Таким образом устраняются издержки обычного вызова метода. Конечно, для больших методов подстановка приведет к «разбуханию» программы, и, скорее всего, никаких преимуществ от использования прямого встраивания не будет.
В последних версиях Java виртуальная машина выявляет подобные ситуации и устраняет лишние передачи управления при оптимизации, поэтому использовать final для методов уже не обязательно — и более того, нежелательно.
Cпецификаторы final и private
Любой закрытый (private) метод в классе косвенно является неизменным (final) методом. Так как вы не в силах получить доступ к закрытому методу, то не сможете и переопределить его. Ключевое слово final можно добавить к закрытому методу, но его присутствие ни на что не повлияет.
Это может вызвать недоразумения, так как при попытке переопределения закрытого (private) метода, также неявно являющегося final, все вроде бы работает и компилятор не выдает сообщений об ошибках:
//: reusing/FinalOverridingIllusion.java
// Все выглядит так, будто закрытый (и неизменный) метод
// можно переопределить, но это заблуждение.
import static net.mindview.util.Print.*;
class WithFinals {
// To же, что и просто private:
private final void f() { print("WithFinals.f()"); }
// Также автоматически является final:
private void g() { print("WithFinals.g()"); }
}
class OverridingPrivate extends WithFinals {
private final void f() {
print("OverridingPrivate.f()");
}
private void g() {
print("OverridingPrivate.g()");
}
}
class OverridingPrivate2 extends OverridingPrivate {
public final void f() {
print("OverridingPrivate2.f()");
}
public void g() {
print("OverridingPrivate2.g()");
}
}
public class FinalOverridingIllusion {
public static void main(String[] args) {
OverridingPrivate2 op2 = new OverridingPrivate2();
op2.f();
op2.g();
// Можно провести восходящее преобразование:
OverridingPrivate op = op2;
// Но методы при этом вызвать невозможно:
//! op.f();
//! op.g();
// И то же самое здесь:
WithFinals wf = op2;
//! wf.f();
//! wf.g();
}
}
<spoiler text="Output:">
OverridingPrivate2.f()
OverridingPrivate2.g()
</spoiler>
«Переопределение» применимо только к компонентам интерфейса базового класса. Иначе говоря, вы должны иметь возможность выполнить восходящее преобразование объекта к его базовому типу и вызвать тот же самый метод (это утверждение подробнее обсуждается в следующей главе). Если метод объявлен как private, он не является частью интерфейса базового класса; это просто некоторый код, скрытый внутри класса, у которого оказалось то же имя. Если вы создаете в производном классе одноименный метод со спецификатором public, protected или с доступом в пределах пакета, то он никак не связан с закрытым методом базового класса. Так как privat-метод недоступен и фактически невидим для окружающего мира, он не влияет ни на что, кроме внутренней организации кода в классе, где он был описан.
Неизменные классы
Объявляя класс неизменным (записывая в его определении ключевое слово final), вы показываете, что не собираетесь использовать этот класс в качестве базового при наследовании и запрещаете это делать другим. Другими словами, по какой-то причине структура вашего класса должна оставаться постоянной — или же появление субклассов нежелательно по соображениям безопасности.
//: reusing/Jurassic.java
// Объявление неизменным всего класса.
class SmallBrain {}
final class Dinosaur {
int i = 7;
int j = 1;
SmallBrain x = new SmallBrain();
void f() {}
}
//! class Further extends Dinosaur {}
// Ошибка: Нельзя расширить неизменный класс Dinosaur
public class Jurassic {
public static void main(String[] args) {
Dinosaur n = new Dinosaur();
n.f();
n.i = 40;
n.j++;
}
}
Заметьте, что поля класса могут быть, а могут и не быть неизменными, по вашему выбору. Те же правила верны и для неизменных методов вне зависимости от того, объявлен ли класс целиком как final. Объявление класса со спецификатором final запрещает наследование от него — и ничего больше. Впрочем, из-за того, что это предотвращает наследование, все методы в неизменном классе также являются неизменными, поскольку нет способа переопределить их. Поэтому компилятор имеет тот же выбор для обеспечения эффективности выполнения, что и в случае с явным объявлением методов как final. И если вы добавите спецификатор final к методу в классе, объявленном всецело как final, то это ничего не будет значить.
Предостережение
На первый взгляд идея объявления неизменных методов (final) во время разработки класса выглядит довольно заманчиво — никто не сможет переопределить ваши методы. Иногда это действительно так.
Но будьте осторожнее в своих допущениях. Трудно предусмотреть все возможности повторного использования класса, особенно для классов общего назначения. Определяя метод как final, вы блокируете возможность использования класса в проектах других программистов только потому, что сами не могли предвидеть такую возможность.
Хорошим примером служит стандартная библиотека Java. Класс Vector Java 1.0/1.1 часто использовался на практике и был бы еще полезнее, если бы по соображениям эффективности (в данном случае эфемерной) все его методы не были объявлены как final. Возможно, вам хотелось бы создать на основе Vector производный класс и переопределить некоторые методы, но разработчики почему-то посчитали это излишним.
Ситуация выглядит еще более парадоксальной по двум причинам. Во-первых, класс Stack унаследован от Vector, и это значит, что Stack есть Vector, а это неверно с точки зрения логики. Тем не менее мы видим пример ситуации, в которой сами проектировщики Java используют наследование от Vector.
Во-вторых, многие полезные методы класса Vector, такие как addElement() и elementAt(), объявлены с ключевым словом synchronized. Как вы увидите в главе 12, синхронизация сопряжена со значительными издержками во время выполнения, которые, вероятно, сводят к нулю все преимущества от объявления метода как final.
Все это лишь подтверждает теорию о том", что программисты не умеют правильно находить области для применения оптимизации. Очень плохо, что такой неуклюжий дизайн проник в стандартную библиотеку Java. (К счастью, современная библиотека контейнеров Java заменяет Vector классом ArrayList, который сделан гораздо более аккуратно и по общепринятым нормам. К сожалению, существует очень много готового кода, написанного с использованием старой библиотеки контейнеров.)
Инициализация и загрузка классов
В традиционных языках программы загружаются целиком в процессе запуска. Далее следует инициализация, а затем программа начинает работу. Процесс инициализации в таких языках должен тщательно контролироваться, чтобы порядок инициализации статических объектов не создавал проблем. Например, в C++ могут возникнуть проблемы, когда один из статических объектов полагает, что другим статическим объектом уже можно пользоваться, хотя последний еще не был инициализирован.
В языке Java таких проблем не существует, поскольку в нем используется другой подход к загрузке. Вспомните, что скомпилированный код каждого класса хранится в отдельном файле. Этот файл не загружается, пока не возникнет такая необходимость. В сущности, код класса загружается только в точке его первого использования. Обычно это происходит при создании первого объекта класса, но загрузка также выполняется при обращениях к статическим полям или методам.
Точкой первого использования также является точка выполнения инициализации статических членов. Все статические объекты и блоки кода инициализируются при загрузке класса в том порядке, в котором они записаны в определении класса. Конечно, статические объекты инициализируются только один раз.
Инициализация с наследованием
Полезно разобрать процесс инициализации полностью, включая наследование, чтобы получить общую картину происходящего. Рассмотрим следующий пример:
//: reusing/Beetle.java
// Полный процесс инициализации.
import static net.mindview.util.Print.*;
class Insect {
private int i = 9;
protected int j;
Insect() {
print("i = " + i + ", j = " + j);
j = 39;
}
private static int x1 =
printInit("static Insect.x1 initialized");
static int printInit(String s) {
print(s);
return 47;
}
}
public class Beetle extends Insect {
private int k = printInit("Beetle.k initialized");
public Beetle() {
print("k = " + k);
print("j = " + j);
}
private static int x2 =
printInit("static Beetle.x2 initialized");
public static void main(String[] args) {
print("Beetle constructor");
Beetle b = new Beetle();
}
}
<spoiler text="Output:">
static Insect.x1 initialized
static Beetle.x2 initialized
Beetle constructor
i = 9, j = 0
Beetle.k initialized
k = 47
j = 39
</spoiler>
Запуск класса Beetle в Java начинается с выполнения метода Beetle.main() (статического), поэтому загрузчик пытается найти скомпилированный код класса Beetle (он должен находиться в файле Beetle.class). При этом загрузчик обнаруживает, что у класса имеется базовый класс (о чем говорит ключевое слово extends), который затем и загружается. Это происходит независимо от того, собираетесь вы создавать объект базового класса или нет. (Чтобы убедиться в этом, попробуйте закомментировать создание объекта.)
Если у базового класса имеется свой базовый класс, этот второй базовый класс будет загружен в свою очередь, и т. д. Затем проводится static-инициализация корневого базового класса (в данном случае это Insect), затем следующего за ним производного класса, и т. д. Это важно, так как производный класс и инициализация его static-объектов могут зависеть от инициализации членов базового класса.
В этой точке все необходимые классы уже загружены, и можно переходить к созданию объекта класса. Сначала всем примитивам данного объекта присваиваются значения по умолчанию, а ссылкам на объекты задается значение null — это делается за один проход посредством обнуления памяти. Затем вызывается конструктор базового класса. В нашем случае вызов происходит автоматически, но вы можете явно указать в программе вызов конструктора базового класса (записав его в первой строке описания конструктора Beetle()) с помощью ключевого слова super. Конструирование базового класса выполняется по тем же правилам и в том же порядке, что и для производного класса. После завершения работы конструктора базового класса инициализируются переменные, в порядке их определения. Наконец, выполняется оставшееся тело конструктора.
Резюме
Как наследование, так и композиция позволяют создавать новые типы на основе уже существующих. Композиция обычно применяется для повторного использования реализации в новом типе, а наследование — для повторного использования интерфейса. Так как производный класс имеет интерфейс базового класса, к нему можно применить восходящее преобразование к базовому классу; это очень важно для работы полиморфизма (см. следующую главу).
Несмотря на особое внимание, уделяемое наследованию в ООП, при начальном проектировании обычно предпочтение отдается композиции, а к наследованию следует обращаться только там, где это абсолютно необходимо.
Композиция обеспечивает несколько большую гибкость. Вдобавок, применяя хитрости наследования к встроенным типам, можно изменять точный тип и, соответственно, поведение этих встроенных объектов во время исполнения. Таким образом, появляется возможность изменения поведения составного объекта во время исполнения программы.
При проектировании системы вы стремитесь создать иерархию, в которой каждый класс имеет определенную цель, чтобы он не был ни излишне большим (не содержал слишком много функциональности, затрудняющей его повторное использование), ни раздражающе мал (так, что его нельзя использовать сам по себе, не добавив перед этим дополнительные возможности). Если архитектура становится слишком сложной, часто стоит внести в нее новые объекты, разбив существующие объекты на меньшие составные части.
Важно понимать, что проектирование программы является пошаговым, последовательным процессом, как и обучение человека. Оно основано на экспериментах; сколько бы вы ни анализировали и ни планировали, в начале работы над проектом у вас еще останутся неясности. Процесс пойдет более успешно — и вы быстрее добьетесь результатов, если начнете «выращивать» свой проект как живое, эволюционирующее существо, нежели «воздвигнете» его сразу, как небоскреб из стекла и металла. Наследование и композиция — два важнейших инструмента объектно-ориентированного программирования, которые помогут вам выполнять эксперименты такого рода.
------------------------
ТРИО теплый пол отзыв
Заработок на сокращении ссылок
Earnings on reducing links
Код PHP на HTML сайты
Категория: Книги по Java
Комментарии |